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Introducing small-world network effects to critical dynamics
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We analytically investigate the kinetic Gaussian model and the one-dimensional kinetic Ising model of two
typical small-world networks~SWN!, the adding type and the rewiring type. The general approaches and some
basic equations are systematically formulated. The rigorous investigation of the Glauber-type kinetic Gaussian
model shows the mean-field-like global influence on the dynamic evolution of the individual spins. Accord-
ingly a simplified method is presented and tested, which is believed to be a good choice for the mean-field
transition widely~in fact, without exception so far! observed for SWN. It yields the evolving equation of the
Kawasaki-type Gaussian model. In the one-dimensional Ising model, thep dependence of the critical point is
analytically obtained and the nonexistence of such a thresholdpc , for a finite-temperature transition, is
confirmed. The static critical exponentsg andb are in accordance with the results of the recent Monte Carlo
simulations, and also with the mean-field critical behavior of the system. We also prove that the SWN effect
does not change the dynamic critical exponentz52 for this model. The observed influence of the long-range
randomness on the critical point indicates two obviously different hidden mechanisms.

DOI: 10.1103/PhysRevE.67.026125 PACS number~s!: 89.75.2k, 64.60.Ht, 64.60.Cn, 64.60.Fr
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I. INTRODUCTION

Small-world networks~SWNs! are networks intermediat
between a regular lattice and a random graph~see Refs.
@1–4# and references therein for review!. They are believed
to capture the essence of networks in reality, such as ne
networks@5#, power grids, social networks, and documen
on the World Wide Web@6,7#, where remote vertices, whil
locally clustered, often have the chance to be connected
shortcuts. Since 1998, when Watts and Strogatz presen
simple model showing SWN effects@1#, it has been studied
intensively and extensively@8#. From the point of view of
statistical physics, the presence of shortcuts assists the
tem to behave as a whole, showing global coherence
SWN behavior.

One may be curious about the extent to which the featu
of phase transitions will be different in spin-lattice mode
built on small-world networks. Because the SWN effe
widely exists in reality, this question is also of much signi
cance. Although new and interesting features have been
vealed recently@4,9–16#, it is still far from being completely
answered. The dynamic aspect has been even less we
derstood@17#. Naturally, we may expect the evolution of
single spin to be influenced partly by the overall syste
however, we find it difficult to offer more specific informa
tion. This is due to the complexity of the dynamics itself, a
the often formidable mathematical task.

In this paper, we report our work on this interestin
problem—the critical dynamics of spin-lattice models bu
on SWN. As the introductory content, we shall first discu
the general approach. Then, among the various model
tems, we choose two special ones for a detailed invest
tion: the Gaussian model, which is relatively easy in ma
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ematics, and the one-dimensional Ising model. Interes
kinetic features are revealed analytically and the study in
dynamic aspect also yields much information about the st
properties, such as the critical point.

This paper is organized as follows: In Sec. II we give t
definition of spin-lattice models built on SWN. Section I
contains the discussion of the general approach~along with a
brief review of the dynamic mechanisms!. The direct appli-
cation to the kinetic Gaussian model can be found in Sec.
In Sec. V, we present a simplified method and prove its
lidity in Sec. V A by comparing its result with the rigorou
one obtained in Sec. IV. Sections V B and V C are devoted
the further applications of this method on the Kawasaki-ty
Gaussian model and the one-dimensional Glauber-type I
model, respectively. In Sec. VI, the influence of the rando
ness on the critical point is analyzed. Section VII is the su
marization with some discussions.

II. SPIN-LATTICE MODELS BUILT ON SMALL-WORLD
NETWORKS

Following the first prototype@1# of SWN, there have been
a number of variants~see, for example, Ref.@18#! in two
basic groups, which can be constructed as the following:
initial network is, for example, a one-dimensional loop ofN
vertices, each vertex being connected to its 2k nearest neigh-
bors. ~1! Each pair of random vertices is additionally co
nected with probabilitypA ; ~2! the vertices are then visite
one after the other, and each link connecting a vertex to
of its k nearest neighbors in the clockwise sense is left
place with probability 12pR , and with probabilitypR it is
reconnected to another randomly chosen vertex. We may
the first group adding-type~SWNs! and the second group
rewiring-type~SWNs!. Both of these modifications introduc
long-range connections. The above algorithms can be
tended to systems with higher dimensionality and even fr
©2003 The American Physical Society25-1
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tal structures.~For example, for a spin located somewhere
a cubic lattice, three of the six bonds in some fixed directio
will be reconnected with probabilitypR , respectively.! These
constructions, with any~infinitesimally low! fraction of
shortcuts, allow us to reconcile local properties of a regu
network ~clustering effect! with global properties of a ran
dom one~the average distancel; log10N).

A spin-lattice model built on SWN, which is the focus o
this paper, can thus be defined: In aD-dimensional regular
network consisting ofN spins with periodic boundary cond
tion, each spin is linked to its 2kD nearest neighbors~in this
paper we will choosek51). Then~1! a certain number of
supplemental links are added;~2! a portion of the bonds are
rewired. Whether it is in group~1! ~adding-type SWN! or
group ~2! ~rewiring-type SWN!, two spins connected by
shortcut act in the same way as those connected by a re
bond, that is, their interaction contributes to the syst
Hamiltonian and they obey the redistribution~exchange!
mechanism. In short, there is no difference between a lo
range bond and a regular one. Other definitions may e
For example, since these small-world networks are mo
systems for the networks in reality, one may have a reaso
choose certain physical quantities, such asJ in the Ising
model, to be different. However, although it is not necess
we will limit the scope of this paper to the above rule.

III. THE DYNAMIC MECHANISM

The various dynamic processes in the critical phenom
are believed to be governed by two basic mechanis
Glauber type with order parameter nonconserved and
wasaki type with order parameter conserved. Recently
Glauber-type single-spin transition mechanism@19,20# and a
Kawasaki-type spin-pair redistribution mechanism@21,22#
have been presented as the natural generalizations of G
er’s flipping mechanism@23# and Kawasaki’s exchang
mechanism@24#, respectively. They are generally applicab
and mathematically well organized. Our work begins with
review of these two mechanisms. This is for the better
derstanding of the calculations in Secs. IV and V, and it a
might be a convenient reference for further studies.

A. Single-spin transition mechanism

Glauber’s single-spin flipping mechanism allows an Isi
system to evolve with its spins flipping to their opposite.
the single-spin transition mechanism@19#, a single spins i

may change itself to any possible values,ŝ i , and the master
equation is

d

dt
P~$s%,t !52(

i
(
ŝ i

@Wi~s i→ŝ i !P~$s%,t !

2Wi~ ŝ i→s i !P~$s j Þ i%,ŝ i ,t !#. ~1!

The transition probability is in a normalized form determin
by a heat Boltzmann factor,
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Wi~s i→ŝ i !5
1

Qi
exp@2bH~$s j Þ i%,ŝ i !#,

Qi5(
ŝ i

exp@2bH~$s j Þ i%,ŝ i !#, ~2!

whereb51/kBT. Based on the master equation, Eq.~1!, one
can prove that,

dqk~ t !

dt
52qk~ t !1(

$s%
F(

ŝk

ŝkWk~sk→ŝk!GP~$s%;t !,

~3!

whereqk(t)[($s%skP($s%;t). There are also correspond
ing equations for the correlation functions.

B. Spin-pair redistribution mechanism

Kawasaki’s spin-pair exchange mechanism allows
Ising system to evolve with its nearest neighbors exchang
their spin values. In the spin-pair redistribution mechani
@21#, two connected spinss j and s l may change to any
possible values,ŝ j and ŝ l , as long as their sum are con
served. The master equation is

d

dt
P~$s%,t !5(̂

j l &
(

ŝ j ,ŝ l

@2Wjl ~s js l→ŝ j ŝ l !P~$s%;t !

1Wjl ~ ŝ j ŝ l→s js l !

3P~$s iÞ j ,s lÞk%,ŝ j ,ŝ l ;t !#. ~4!

The redistribution probability is also in a normalized for
determined by a heat Boltzmann factor,

Wjl ~s js l→ŝ j ŝ l !5
1

Qjl
ds j 1s l ,ŝ j 1ŝ l

3exp@2bH~$sm%mÞ j ,l ,ŝ j ,ŝ l !#,

~5!

where the normalization factorQjl is

Qjl 5 (
ŝ j ,ŝ l

ds j 1s l ,ŝ j 1ŝ l
exp@2bH~$sm%mÞ j ,l ,ŝ j ,ŝ l !#.

Based on the master equation, Eq.~4!, one can prove that

dqk~ t !

dt
522Dqk~ t !1(

$s%
(
w F (

ŝk ,ŝk1w

ŝk

3Wk,k1w~sksk1w→ŝkŝk1w!GP~$s%;t !, ~6!

whereD is the dimensionality and(w stands for the summa
tion taken over the nearest neighbors.
5-2
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C. How to apply them to SWN

In the construction of SWN, according to a certain pro
ability, we will have a whole set of possible realizations.
the theoretically correct way of treating dynamic syste
built on SWN actually consists of three steps: First, we ha
to make a full list of all the possible realizations and po
out the probability of each one of them. Second, we tr
each system respectively~apply the dynamic mechanism
and obtain the master equation and the physical quantitie
interest!. Third, we give the expectation value with all the
results. This is cumbersome, but conceptually straight
ward. In Sec. V, we shall discuss whether there is any s
plified method.~In fact, there is.!

IV. KINETIC GAUSSIAN MODEL GOVERNED BY THE
GLAUBER-TYPE MECHANISM

We have discussed the general approach right abov
Sec. III C, and in this section we will directly perform th
calculations according to the three steps, to study the th
dimensional~3D! kinetic Gaussian model governed by th
Glauber-type single-spin transition mechanism~see Sec.
III A !. The calculation to be carried out is very long, b
fortunately we can borrow some results from our ear
studies@19,20#.

The Gaussian model, proposed by Berlin and Kac, i
continuous-spin model. Its Hamiltonian,

2bH5K(
^ i , j &

s is j , ~7!

whereK5J/kBT. The spinssk can take any real value be
tween (2`,1`), and the probability of finding a given spi
betweensk andsk1dsk is assumed to be the Gaussian-ty
distribution, f (sk)dsk; exp@2(b/2)sk

2#dsk , where b is a
distribution constant independent of temperature. Thus,
summation for the spin value turns into the integration(s

→*2`
` f (s)ds. This model has been studied often as a st

ing point for investigations of other systems.
Governed by the Glauber-type single-spin transit

mechanism, the expectation value of single spin@19# obeys

dqk~ t !

dt
52qk~ t !1

K

b (
^qk8 ,qk&

qk8~ t !. ~8!

Since in SWN, a spin may have a neighbor located very
from it, in the following calculations the summation is
include every spin that is connected withsk . Taking average
of Eq. ~8!, we can obtain the evolution of the magnetizati
M (t)5(kqk(t)/N.

A. Kinetic Gaussian model on an adding-type small-world
network

First, we treat the 3D kinetic Glauber-type Gauss
model on an adding-type SWN consisting ofN ~a very large
number! spins. The Kawasaki type is still tractable, but t
mathematical task will be more complex. We will leave th
till Sec. V. Besides the regular bonds, each pair of spins
02612
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matter how far apart, is connected via an additional bo
with probability pA . Actually there are 2N(N21)/2 different
networks, each with a given probability. As a model syst
for the networks in reality, we expect the number of the
bonds,n;N(N21)pA/2, to be much smaller thanN. So
practically we requirepAN!1. With respect to a specific
spin s i jk , all the networks can be divided intoN groups
listed as the following.

~a! (0): There is no random bond ons i jk , and the prob-
ability is (12pA)N21. According to Eq.~8!,

d

dt
qi jk~ t !52qi jk~ t !1

K

b (
w

@qi 1w, j ,k~ t !1qi , j 1w,k~ t !

1qi , j ,k1w~ t !#.

~b! (1): There is only one random bond ons i jk , and the
probability isCN21

1 pA(12pA)N22. In fact, this group can be
further divided intoN21 subgroups, each corresponding
a specific spin connected tos i jk , and each with the sam
probability pA(12pA)N22. Averaging them, we get

dqi jk~ t !

dt
52qi jk~ t !1

K

b (
w

@qi 1w, j ,k~ t !1qi , j 1w,k~ t !

1qi , j ,k1w~ t !#1
K

b
M ~ t !.

~c! (n): There aren random bonds ons i jk , and the prob-
ability is CN21

n pA
n(12pA)N2n21. Similarly, in average we

get,

dqi jk~ t !

dt
52qi jk~ t !1

K

b (
w

@qi 1w, j ,k~ t !1qi , j 1w,k~ t !

1qi , j ,k1w~ t !#1
nK

b
M ~ t !.

~d! (N21): There areN21 random bonds ons i jk , and
the probability ispA

N21 .

dqi jk~ t !

dt
52qi jk~ t !1

K

b (
w

@qi 1w, j ,k~ t !1qi , j 1w,k~ t !

1qi , j ,k1w~ t !#1
K

b
~N21!M ~ t !.

Thus, over all the realizations,

dqi jk~ t !

dt
52qi jk~ t !1

K

b (
w

@qi 1w, j ,k~ t !1qi , j 1w,k~ t !

1qi , j ,k1w~ t !#1
K

b (
n50

N21

CN21
n pA

n~1

2pA!N2n21nM. ~9!

Fortunately, we find the following relationship:
5-3
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(
n50

N21

CN21
n pA

n~12pA!N2n21n5~N21!pA , ~10!

and thus

dqi jk~ t !

dt
52qi jk~ t !1

K

b (
w

@qi 1w, j ,k~ t !1qi , j 1w,k~ t !

1qi , j ,k1w~ t !#1
K

b
~N21!pAM ~ t !, ~11!

Similar results can be found in one- and two-dimensio
models, and taking average we obtain

dM~ t !

dt
52F12

2DK

b
2

K

b
~N21!pAGM ~ t !, ~12!

whereD is the dimensionality. The solution of Eq.~12! is

M ~ t !5M ~0!exp~2t/t!,

where the relaxation time

t5
1

12K/Kc
A

,

and the critical point

Kc
A5

b

2D1~N21!pA
. ~13!

It is well known that for the critical point of the regula
model,Kc

reg5b/2D, we can clearly see thatthe critical tem-
perature will get higher as more long range bonds a
added. Actually, for a vertex located on an adding-typ
SWN, the number of the long-range bonds isnA;(N
21)pA . In the small-world region, where the expectednA
for most of the vertices is very small, the change of t
critical point will be almost unperceivable.~The analysis of
this result can be found in Sec. VI.!

B. Kinetic Gaussian model on a rewiring-type small-world
network

Second, we treat the kinetic Gaussian model on
rewiring-type SWN with a characteristic probabilitypR . Be-
cause of the length, here we only give the details of theD
case. With regards to a specific spinsk , all the networks can
be divided into four major groups listed as the following,~1!
both of the two regular bonds onsk , connectingsk21 and
sk11, are not rewired;~2! the bond connectingsk21 andsk
is left unchanged but that connectingsk andsk11 is rewired;
~3! the bond connectingsk andsk11 is left unchanged bu
that connectingsk21 andsk is rewired;~4! both of them are
rewired. The final result comes from the summation of all
four parts~see Appendix A for the details!:
02612
l

e
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e

dqk~ t !

dt
52qk~ t !1pR

2K

b
M ~ t !

1~12pR!
K

b
@qk21~ t !1qk11~ t !#, ~14!

In two- and three-dimensional models, there are 24 and 26

major groups, respectively, and they can be treated in
same way. Similar results are obtained:

dM~ t !

dt
52S 12

2DK

b D M ~ t !. ~15!

Obviously, the relaxation time

t5
1

12K/Kc
R

,

where the critical point

Kc
R5Kc

reg5b/2D. ~16!

To summarize, we strictly obtain the evolution of th
Gaussian model built on SWN. On the adding-type SW
the critical temperature will get higher as more long ran
bonds are added, while on the rewiring-type SWN the cr
cal temperature is unchanged. With the dynamic scaling
pothesist;jz;uT2Tcu2zn, we havezn51, wherez is the
dynamic critical exponent andn is the correlation length
critical exponent. We shall leave the summarization of
properties to Sec. VII. The influence of the long-range bon
on the critical point, which is a rather interesting topic, w
be discussed in Sec. VI.

The Gaussian model, being an idealization, often has
value of serving as a starting point for the more gene
studies. The evolving equations of the individual spins sh
distinctly the influence of the global coherence, whichauto-
matically takes a mean-field-like form as if it comes from
averaged spin.This character, as well as some alread
proved facts in earlier studies about the static behavior, p
vides us with some helpful hints for the simplification of th
method, which is the topic of the following section.

V. THE SIMPLIFIED METHOD

Presently, for the critical dynamics on SWN, we still lac
a well-established approach that should be both theoretic
reliable and practically feasible. The above-mention
method~and the results! is theoretically rigorous, but it is too
complex for the other models, even for the simplest o
dimensional Ising model. In the preceding section, we h
pointed out that, inthe dynamic evolutionof the Gaussian
model built on SWN, the influence of the system as a wh
on individual spins is mean-field-like. On the other han
recent studies on the Ising model and theX-Y model built on
SWN have also shown that the phase transition is ofthe
mean-fieldtype ~see Refs.@4,9–12,15# and Sec. V C for de-
tails!. The various model systems built on SWN probab
belong to the same mean-field universality class, and t
5-4



th
th
th
ia
a
e
e
F

-
il

g

ys
e
ki
m

f

t

nal

qs.

g-

d
ined
in-

how
ed
or-
ld
ter
b-

-
N.
s,

he
erned
dy
av-

ible
dy-
us

,

INTRODUCING SMALL-WORLD NETWORK EFFECTS TO . . . PHYSICAL REVIEW E67, 026125 ~2003!
might be treated with the same dynamic approach. In
problem, which is found to be of the mean-field nature,
following method may be the best choice. We deem all
possible networks as a single one. The effective Hamilton
of a spin-lattice model built on such a network is defined
the expectation value over all possible realizations. Its eff
tive behavior, e.g., the redistribution between two vertic
connected with each other, is also the averaged result.
example, two sites,s i ands j , are connected with probabil
ity p, then redistribution occurs between them with probab
ity pWi j . ~It is the basic assumption when we are treatin
system governed by the Kawasaki-type mechanism.! Then
we can directly apply the dynamic mechanisms to this s
tem. This method, which is of the mean-field nature, is c
tainly more tractable in mathematics. We apply it to the
netic Gaussian model again and see if it will lead to the sa
result.

A. Application in kinetic Gaussian model governed by the
Glauber-type mechanism

In the 3D Gaussian model (N spins in total! built on
adding-type SWN with periodic boundary condition, the e
fective Hamiltonian is

2bH5K(
i , j ,k

s i jk~s i 11,j ,k1s i , j 11,k1s i , j ,k11!

1
1

2
KpA(

i , j ,k
s i jk (

i 8, j 8,k8
s i 8 j 8k82

1

2
KpA(

i , j ,k
s i jk

2 .

~17!

With the Glauber-type transition mechanism, we begin
derive the single-spin evolving equation according to Eq.~3!,
along the same line of the calculations as in Ref.@19#. We
obtain

(
ŝ i jk

ŝ i jkWi jk~s i jk→ŝ i jk !5
K

b F(
w

~s i 1w, jk1s i j 1w,k

1s i j ,k1w!1~N21!pAs̄G ,
~18!

where

s̄5
1

N21 S (
lmn

s lmn2s i jk D'
1

N (
lmn

s lmn .

Substituting Eq.~18! into Eq. ~3!, we get

dqi jk~ t !

dt
52qi jk~ t !1

K

b (
w561

@qi 1w, jk~ t !1qi j 1w,k~ t !

1qi j ,k1w~ t !#1
K

b
~N21!pAM ~ t !. ~19!
02612
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Similar results can be obtained for one- and two-dimensio
models. These results, along with those forM (t), are exactly
in accordance with what we have obtained in Sec. III B, E
~11! and ~12!.

In the 3D kinetic Gaussian model built on the rewirin
type SWN, the effective Hamiltonian is,

2bH5K~12pR!(
i , j ,k

s i jk~s i 11,jk1s i , j 11,k1s i , j ,k11!

1KpR

3

N (
i , j ,k

s i jk (
i 8, j 8,k8

s i 8 j 8k82KpR

3

N (
i , j ,k

s i jk
2 .

~20!

Similar calculations yield

dqi jk

dt
52qi jk1pR

6K

b
M1~12pR!

K

b (
w

~qi 1w, j ,k

1qi , j 1w,k1qi , j ,k1w!.

This is also in accordance with the rigorous result, Eqs.~14!
and~15!. Thus, in the kinetic Gaussian model, this simplifie
method yields the same results as the rigorous ones obta
with the more complex standard method. As various sp
lattice models, such as the Ising model, are believed to s
mean-field behavior on SWN, we believe that this simplifi
method is able to provide at least qualitatively correct inf
mation. In this sense, it is very different from the mean-fie
approximations taken in other universality classes. In la
studies, we will use it to study some more complex pro
lems; the following are two examples.

B. Application in kinetic Gaussian model governed by a
Kawasaki-type mechanism

Now we apply this simplified method to study the diffu
sion process in the kinetic Gaussian model built on SW
Although we still have to deal with many complex equation
it is relatively easy compared with the formidable task of t
standard approach. In such processes, the system is gov
by the Kawasaki-type redistribution mechanism. As alrea
mentioned at the beginning of this section, the system beh
ior, just as the Hamiltonian, is also averaged over all poss
realizations. The basic equations for the Kawasaki-type
namics listed below are generally applicable in vario
order-parameter-conserved processes.

~1! On D-dimensional adding-type SWN: Accordingly
the master equation should be modified as,

d

dt
P~$s%,t !5(̂

j l &
(

ŝ j ,ŝ l

@2Wjl ~s js l→ŝ j ŝ l !P~$s%;t !

1Wjl ~ ŝ j ŝ l→s js l !P~$s iÞ j ,s lÞk%,ŝ j ,ŝ l ;t !#

1
1

2
pA(

j
(
lÞ j

(
ŝ j ,ŝ l

@2Wjl ~s js l→ŝ j ŝ l !

3P~$s%;t !1Wjl ~ ŝ j ŝ l→s js l !

3P~$s iÞ j ,s lÞk%,ŝ j ,ŝ l ;t !#, ~21!
5-5
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where the redistribution probabilityWjl (s js l→ŝ j ŝ l) is of
the same form as Eq.~5!. With Eq. ~21!, we can get that

dqk~ t !

dt
522Dqk~ t !1(

$s%
(
w F (

ŝk ,ŝk1w

ŝk

3Wk,k1w~sksk1w→ŝkŝk1w!GP~$s%;t !

1pAH 2~N21!qk~ t !1(
$s%

F(lÞk
(

ŝk ,ŝ l

ŝk

3Wkl~sks l→ŝkŝ l !GP~$s%;t !J
[Ak

(1)1pAAk
(2) . ~22!

~2! On D-dimensional rewiring-type SWN: Accordingly
the master equation should be modified as

d

dt
P~$s%,t !5~12pR!(̂

j l &
(

ŝ j ,ŝ l

@2Wjl ~s js l→ŝ j ŝ l !

3P~$s%;t !1Wjl ~ ŝ j ŝ l→s js l !

3P~$s iÞ j ,s lÞk%,ŝ j ,ŝ l ;t !#1DpR

1

N21

3(
j

(
lÞ j

(
ŝ j ,ŝ l

@2Wjl ~s js l→ŝ j ŝ l !
ic

-

02612
P~$s%;t !1Wjl ~ ŝ j ŝ l→s js l !

3P~$s iÞ j ,s lÞk%,ŝ j ,ŝ l ;t !#. ~23!

The redistribution probabilityWjl (s js l→ŝ j ŝ l) is of the
same form as Eq.~5!, and

dqk~ t !

dt
5~12pR!H 22Dqk~ t !1(

$s%
(
w F (

ŝk ,ŝk1w

ŝk

3Wk,k1w~sksk1w→ŝkŝk1w!GP~$s%;t !J
1

DpR

N21 H 2~N21!qk~ t !1(
$s} F(lÞk

(
ŝk ,ŝ l

ŝk

3Wkl~sks l→ŝkŝ l !GP~$s%;t !J
[~12pR!Rk

(1)1
DpR

N21
Rk

(2) . ~24!

AlthoughAk
(1,2) andRk

(1,2) are of the same form, respectivel
we use different symbols because they are actually diffe
~determined by the Hamiltonian-dependent redistribut
probability W).

First we treat the Gaussian model built on the adding-ty
SWN. The first part,Ai jk

(1) , comes from the redistribution
between the nearest neighbors. In the 3D case, with Eq~5!
we can obtain
Ai jk
(1)5

1

2~b1K !
b$@~qi 11,j ,k2qi jk !2~qi jk2qi 21,j ,k!#1@~qi , j 11,k2qi jk !2~qi jk2qi , j 21,k!#1@~qi , j ,k112qi jk !

2~qi jk2qi , j ,k21!#%1
K

2~b1K !
@2~2qi 21,j ,k2qi 21,j 11,k2qi 21,j 21,k!1~2qi 21,j ,k2qi jk2qi 22,j ,k!

12~2qi 11,j ,k2qi 11,j 11,k2qi 11,j 21,k!1~2qi 11,j ,k2qi jk2qi 12,j ,k!12~2qi , j 21,k2qi , j 21,k112qi , j 21,k21!

1~2qi , j 21,k2qi jk2qi , j 22,k!12~2qi , j 11,k2qi , j 11,k112qi , j 11,k21!1~2qi , j 11,k2qi jk2qi , j 12,k!

12~2qi , j ,k212qi 11,j ,k212qi 21,j ,k21!1~2qi , j ,k212qi jk2qi , j ,k22!12~2qi , j ,k112qi 11,j ,k112qi 21,j ,k11!

1~2qi , j ,k112qi jk2qi , j ,k12!#. ~25!
Actually this is not as complex as it seems. With the latt
constanta, we can transform the above expression to be

Ai jk
(1)5

3a2

b1K S b

6
2K D¹2q~r ,t !. ~26!

The second part,Ai jk
(2) , comes from the redistribution be

tweens i jk and the farther spins,s i 8 j 8k8 . The result is
e
Ai jk

(2)52~N21!qi jk~ t !1
1

2 (
i 8 j 8k8Þ i jk

@qi jk~ t !1qi 8 j 8k8~ t !#

1
K

2b (
i 8 j 8k8Þ i jk

(
w

@„qi 1w, j ,k~ t !1qi , j 1w,k~ t !

1qi , j ,k1w~ t !…2„qi 81w, j 8,k8~ t !1qi 8, j 81w,k8~ t !

1qi 8, j 8,k81w~ t !…#, ~27!
5-6



ng

n
s

ex
m
to
th
ac

n

pe

e
e

a

th
sy

t

l-
vio
e

za

th
th
bo

ing

ber

ns
ly

cal
r
ts
the

on-
e-
-

d
ical

h
ties
g-
the
he

l-
e

t,
wn
ed

for
of
g-

e

n
ue

INTRODUCING SMALL-WORLD NETWORK EFFECTS TO . . . PHYSICAL REVIEW E67, 026125 ~2003!
Substituting Eqs.~26! and ~27! into Eq. ~22!, we obtain the
evolving equation of the Gaussian model built on 3D addi
type SWN,

]q~r ,t !

]t
5F 3a2

b1K S b

6
2K D1pA~N21!

a2K

2b G¹2q~r ,t !

1
pA~N21!

2 S 12
6K

b D @M ~ t !2q~r ,t !#. ~28!

Similarly, on 3D rewiring-type SWN we obtain

]q~r ,t !

]t
5H ~12pR!

3a2

b1K~12pR! Fb

6
2K~12pR!G

13pR

K

2b
~12pR!J ¹2q~r ,t !1

3pR

2 F12
6K

b

3~12pR!G@M ~ t !2q~r ,t !#. ~29!

From these two equations we can clearly see the influe
of the system built on SWN as a whole on individual spin
On regular lattices the evolution of the system can be
plained by the diffusion mechanism, while on SWN, to so
degree, the individual spins will automatically adjust itself
approach the average magnetization. This is obviously
result of the global coherence introduced by the small fr
tion of the long-range bonds.

On regular lattice, where the evolution is pure diffusio
]q(r ,t)/]t5D¹2q(r ,t), and the diffusion coefficientD will
vanish near the critical point. However, on adding-ty
SWN, where ]q(r ,t)/]t5D 8¹2q(r ,t)1C@M (t)2q(r ,t)#,
two temperatures,Tc1

A andTc2
A can be obtained by settingD 8

andC to zero, respectively.Tc1
A will be lower than the critical

temperature on a regular lattice,Tc
reg , and suggests that th

point at which the diffusion stops will be lowered by th
randomness.Tc2

A equalsTc
reg , and at this point the evolution

will be pure diffusion. Similarly, there are also two temper
tures for rewiring-type SWN, but we will haveTc1

R ,Tc2
R

,Tc
reg .

Obviously, the system behavior strongly depends on
temperature. For example, we study a one-dimensional
tem, and the initial magnetization isq(x,0)5sinx. When the
temperatureT.Tc2, both D 8 and C are positive, and the
magnetization will approach homogeneity. WhenT,Tc1,
both D 8 and C are negative, and the inhomogeneity ge
more remarkable during the evolution. WhenTc2,T,Tc1 ,
D 8.0 but C,0, and this is a more complex region. A
though here we can still easily predict the system beha
with Eq. ~28! and obtain a stationary point, generally th
evolution will be strongly dependent on the local magneti
tion.

C. Application to the Ising model

The second application of the simplified method is to
one-dimensional ferromagnetic Ising model governed by
Glauber-type mechanism. Recently, it has been studied
02612
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analytically@4,9# and with Monte Carlo simulations@10–14#.
Due to the mathematical difficulties, the study was not go
very smoothly at the beginning. In Ref.@9#, Gitterman con-
cluded that the random long-range interactions, the num
of which is above a minimal value, lead toa phase transi-
tion. In Ref.@4#, Barrat and Weigt used some approximatio
and expected a finite critical point ‘‘at least for sufficient
large p and k>2’’ on rewiring-type SWN. They found out
that this transition is of the mean-field type. Although they
could not calculate the transition analytically, the numeri
computation demonstrateda nonvanishing order paramete
in the presence of a vanishingly small fraction of shortcu,
for k52 and 3. The numerical results seemed to support
following relationship,Tc;22k/ log10pR . The more recent
Monte Carlo studies have proved the above-mentioned c
clusions on adding-type SWN and rewiring-type SWN, r
spectively, but in those casesk51. The analysis of the rela
tionship betweenTc and pR can be found in Ref.@11#. The
critical exponents obtained from the simulation@11,12,15#,
b'1/2, a'0, andn'1/2, further establish the mean-fiel
character. However, although there is substantial numer
proof, the nonexistence of such a thresholdpc , for a finite-
temperature transition, is still to be confirmed.

In this paper, we will apply the simplified method, whic
is of the mean-field nature, to study the dynamic proper
of the one-dimensional Ising model built on both addin
type and rewiring-type SWN. We hope the success in
Gaussian model will continue in Ising system, of which t
behavior is already known to be the mean-field type. A
though we cannot obtain the full picture of the evolution, w
are able to get the exactp dependence of the critical poin
and some interesting critical exponents. As will be sho
below, our result agrees perfectly with the above-mention
numerical simulation.

We find that the system shows very similar behavior
adding- and rewiring-type SWN. We shall give the details
rewiring-type SWN only, and report on the results of addin
type SWN later.

For a rewiring-type SWN, the effective Hamiltonian is th
same as Eq.~20! ~the one-dimensional version!. We substi-
tute it into the single-spin evolving equation, Eq.~3!, and
obtain

dqk~ t !

dt
52qk~ t !1(

$s%
tanh@K~12pR!~sk211sk11!

12KpRs̄#P~$s%;t !, ~30!

wheres̄5( j Þks j /(N21)'( js j /N.
If pR50, then it is the one-dimensional Ising model o

regular lattice, which we are familiar with. One can contin
to write

dqk~ t !

dt
52qk~ t !1

1

2
~qk211qk11!tanh 2K

and
5-7
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dM~ t !

dt
52M ~ t !~12tanh 2K !.

It yields M (t)}e2t/t, where t5(12tanh 2K)21. When K
→Kc

reg5`, t;jz;(e2K)2, and thusz52.
If the rewiring probabilitypR51, then

dqk~ t !

dt
52qk~ t !1(

$s%
tanh~2Ks̄ !P~$s%;t !,

and

dM~ t !

dt
52M ~ t !1(

$s%
tanh~2Ks̄ !P~$s%;t !.

Although ^ tanh(2Ks̄)&Þtanh(2KM), if we study the case
when, near the critical point, the system is in almost th
ough disorder, we will have^ tanh(2Ks̄)&; tanh(2KM)
;2KM, and

dM~ t !

dt
;2M ~ t !1tanh@2KM ~ t !#.

This helps us to determine the critical pointKc51/2. When
K,Kc51/2, then the system will be stable in a disorder
state withM50, but whenK>Kc51/2, there appears som
kind of order. Taking Taylor expansion, one can find th
whenK is nearKc , M;(K2Kc)

1/2. This leads tob51/2 ~in
this specific situation!. We also get the relaxation timet
;uK2Kcu21, with the scaling hypothesis~see below! we
havezn51.

Qualitatively similar situation should also be found wh
pR is between 0 and 1. First we assume that there is a cri
temperature, above which the system is disordered and
low which there begins to show nonzero magnetizati
From Eq.~30! we find that if initially M50 is given, then
the system will stay in this disordered state. But below
critical temperature this equilibrium will not be stable. W
can determine the critical point introducing a small pertur
tion. WhenM→0,

dqk~ t !

dt
'2qk~ t !1(

$s%
tanh@K~12pR!~sk21

1sk11!#P~$s%;t !12KpR(
$s%

s̄$12tanh2@K~1

2pR!~sk211sk11!#%P~$s%;t !

52qk~ t !1
1

2
~qk211qk11!tanh@2K~12pR!#

12KpR(
$s%

s̄H 12
1

2
~11sk21sk11!tanh2@2K~1

2pR!#J P~$s%;t !. ~31!
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BecauseM is very small, we believe 1/N (k^s̄sk21sk11& is
an even smaller quantity of higher order. Thus

dM~ t !

dt
52M1M tanh@2K~12pR!#

12KpRH 12
1

2
tanh2@2K~12pR!#J M . ~32!

The critical point can be determined as

tanh@2Kc
R~12pR!#12Kc

RpRH 12
1

2
tanh2@2Kc

R~12pR!#J
51. ~33!

If K,Kc
R , the disordered stateM50 will be stable, but if

K.Kc
R , a small perturbation will drive the system apa

from the disordered state towards nonzero magnetizat
Now we continue to find several interesting critical exp
nents.

~1! x;uT2Tcu2g: Near the critical point,Meq→0. If a
weak fieldH is introduced, we will have

2bH5(
k

skFK~12pR!sk111pR

K

N21 (
j Þk

s j1
H

kBTG ,
and

dqk~ t !

dt
52qk~ t !1(

$s%
tanhFK~12pR!~sk211sk11!

12KpRs̄1
H

kBTGP~$s%;t !. ~34!

Following the same way as that taken in the calculation
the critical point ~in fact, we can just replace 2KpRs̄ by
2KpRs̄1H/kBT), we get

d

dt
M ~ t !52M ~ t !1M ~ t !tanh@2K~12pR!#1S 2KpRM ~ t !

1
H

kBTD H 12
1

2
tanh2@2K~12pR!#J . ~35!

From Eq.~35!, one can easily find that in a system in equ
librium near the critical point,K5Kc

R1D, and

x[
]M

]H
;D21. ~36!

Thus,g51.
~2! M;uT2Tcub: WhenM→0, we take

1

N (
k

^s̄sk21sk11&;M3.

Then from Eq.~31! we can get
5-8
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dM~ t !

dt
'2S 12tanh@2K~12pR!#22KpR

3H 12
1

2
tanh2@2K~12pR!#J D M ~ t !

2KpRtanh2@2K~12pR!#M3~ t !.

When K2Kc
R5D→0, let dM(t)/dt50, and one will get

M2;D by taking Taylor expansion. Thus, the critical exp
nentb51/2.

~3! t;jz;uT2Tcu2zn: When studying the critical slow
ing down, we can assumeM to be very small, and thus w
use Eq.~32!. It yields

M ~ t !5M ~0!e2t/t,

where

t21512tanh@2K~12pR!#22KpR

3H 12
1

2
tanh2@2K~12pR!#J .

If K→Kc
R , thent→`̇. If K5Kc

R2D, andD→0, then one
will find t;D21. Thuszn51. It has been found in Monte
Carlo simulations thatn'1/2, so z52. It is of the same
value as that obtained on the regular lattice.

1D Ising model on adding-type SWN showqualitatively
the samebehavior Its critical point can be determined as

tanh 2Kc
A1Kc

A~N21!pAS 12
1

2
tanh22Kc

AD51, ~37!

and we have foundthe same critical exponents, g, b, andz.
For a vertex on an adding-type SWN lattice, the num

of the long-range bonds isnA;(N21)pA , while for a ver-
tex on a rewiring-type SWN lattice,nR;2pR . Then depen-
dence of critical pointKc of 1D Ising model on adding-type
and rewiring-type SWN, Eqs.~33! and~37!, can be found in

FIG. 1. Then dependence of critical pointKc of 1D Ising model
on adding-type and rewiring-type SWN.
02612
r

Fig. 1. One can clearly see the above mentioned approxim
relationship, Kc

A}2 log10nA;2 log10@(N21)pA#, or Kc
R}

2 log10nR;2 log10(2pR).
When nA and nR are small enough~in the small-world

region!, from Eqs.~33! and ~37! we can get

nR.~12tanh 2Kc
R!Y S 1

2
Kc

Rtanh22Kc
RD ,

nA.~12tanh 2Kc
A!Y FKc

AS 12
1

2
tanh22Kc

AD G .
When nA and nR are approaching zero,Kc

A,R→`. For the
same value of the critical point, (nR2nA)→01. As shown in
Fig. 1, for most of the region, the two curves are very clo
to each other. However, though the difference may be infi
tesimal, the curve ofnR is always above that ofnA , as is
distinct when these curves are relatively large.

VI. THE INFLUENCE OF THE RANDOMNESS ON THE
CRITICAL POINT

Regarding the behavior of the critical point, our resu
show interesting contrast between the Gaussian model
the Ising model. Here, we shall mention another interest
model system, theD-dimensional mean-field~MF! Ising
model, which might help us understand this problem. Fo
randomly selected spin in this model, each of its 2D nearest
neighbors is replaced by an averaged one, and it is w
known that the critical point isKc51/2D. A simple calcula-
tion will yield that on rewiring-type SWN,Kc

R will not
change, while on adding-type SWN, since the long-ran
bonds increase the contact of a spin with the system,Kc

A

51/(2D1nA).
Our result of the 1D Ising model is in contrast to that

the MF Ising model and the Gaussian model, while for ea
one of them the critical temperature will be very close
adding-type SWN and rewiring-type SWN~the former will
be higher! in the small-world region. This may be a result
the totally different role played by the long-range bonds.~1a!
In the D-dimensional MF Ising model, the critical point i
solely determined by the mean coordination number that
cides the coupling between an individual spin and the s
tem. It is unchanged on rewiring-type SWN but will increa
on adding-type SWN. Thus, the critical temperature will st
unaltered on rewiring-type SWN but will be slightly in
creased by the long-range bonds on adding-type SW
which typically take up only a small fraction.~1b! As is
shown by earlier studies@19#, the Gaussian model, thoug
being a very different system, has a critical point that a
only depends on the mean coordination number. On SWN,
its critical point is very similar to the MF Ising model. It i
believed to be mainly a mathematical result, and to und
stand this we shall review the calculations in Sec. IV. O
rewiring-type SWN, for an individual spin, the long rang
interaction partly replaces the nearest-neighbor~nn! cou-
pling. However, the coordination number can be conside
unchanged, since no bonds are created or eliminated~they
are just redirected!. As a result, on the right-hand side of th
5-9
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evolving equations of the spins, the lost part of the nn c
pling is exactly compensated by the MF term. The critic
point is determined by taking average of the evolving eq
tions of the spins, which only consist of linear terms. Thus
is mathematically straightforward that the critical point w
stay the same. On adding-type SWN, the consideratio
similar, except that here the coordination number will
slightly increased.~2! The crossover observed in the on
dimensional Ising model is certainly governed by a differe
mechanism. For example, on rewiring-type SWN, there
two competing length scales: the correlation lengthj
; exp(2J/kBT), and the characteristic length scale of t
SWN, which can be taken as the typical distance between
ends of a shortcut@25#, z;pR

21/D5pR
21 . When j,z, the

system basically behaves as a regular lattice, otherwise it
show MF behavior as an effect of the long range interactio
The transition occurs atj'z, suggesting a critical pointTc
;u log10pRu21. Since the two structures, rewiring-type SW
and adding-type SWN, have the same length scales, the
cal point can hardly be separated in the small-world regi
However, interestingly we find that the mechanism in E
~1!, i.e., long-range bonds→ coordination number~interac-
tion energy! → critical point, can also be observed, thou
being a minor factor. As is mentioned in Sec. V C, for t
same expected number of long-range bonds, the critical t
perature on adding-type SWN will be higher than that o
tained on rewiring-type SWN. We expect it to be a gene
phenomenon, though not yet reported by the numerical si
lations.

VII. SUMMARY AND DISCUSSION

In this paper, we study the critical dynamics, Glauber ty
and Kawasaki type, on two typical small-world network
adding type and rewiring type.

The logical sequence.As the introductory content we dis
cuss the general approach of the critical dynamics, whic
theoretically straightforward but may be mathematically t
complex. We directly apply it to the kinetic Gaussian mod
governed by Glauber-type mechanism and obtain its ev
tion. We observe that, in thedynamicevolution of the indi-
vidual spins, the influence of the system as a whole, whic
the result of the presence of the long-range bonds, takes
mean-field-like form as if it comes from an averaged spin.
the same time, earlier studies have revealed the~MF! static
behavior of the Ising model andX-Y model. These both sug
gest us to present the following simplified method. All t
SWN realizations are deemed as a single one, with both
effective Hamiltonian and the effective behavior averag
over all of them. It is tested in the same model and exa
leads to the same rigorous result. Then this method, whic
believed to be theoretically reliable and mathematically f
sible, is applied to two more difficult problems, the Gauss
model governed by Kawasaki-type mechanism and the o
dimensional kinetic Ising model.

The Gaussian model.~1! Whether it is built on adding-
type SWN or rewiring-type SWN, the long-range bonds
troduce the mean-field-like global influence of the system
the dynamic evolution of the individual spins. On addin
02612
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type SWN such influence is additional while on rewirin
type SWN, it partly replaces that of the neighboring spi
~2! On adding-type SWN, as more long-range bonds
added, the critical temperature gets higher; but on rewiri
type SWN it does not differ at all from that of the regul
lattice. This interesting discrepancy is explained in Sec.
~3! In both networks, the relaxation timet51/(12K/Kc),
and thuszn51. This dynamic property has also been o
tained on regular lattices and fractal lattices@19–22#. It is
highly universal, independent of the geometric structure a
the dynamic mechanism.~4! On SWN, the evolution of the
Kawasaki-type model can be viewed as the combination
two mechanisms, the diffusion and the automatic adjustm
of the single spin to approach the average magnetization.
pure diffusion equation (]/]t)q(r ,t)5D¹2q(r ,t) will be
modified as (]/]t)q(r ,t)5D 8¹2q(r ,t)1C@M (t)2q(r ,t)#.
By setting D 8 and C to zero we will get two competing
characteristic temperatures, instead of the single definitio
the critical point for the regular lattices (D50). The tem-
perature dependence of the dynamic evolution is discusse
Sec. V B.

The Ising modelanalytically studied by the simplified
method: The system shows very similar behavior on the
networks, adding-type SWN and rewiring-type SWN. Intr
ducing a very small perturbation of the local magnetizat
to the disordered state, we obtain the critical point by judg
the stability of the equilibrium. The inexistence of such
thresholdpc for a finite-temperature transition is confirmed1

From the dynamic equation, we obtain the critical expone
g andb in agreement with the numerical simulation and t
already-proved MF behavior of the system. The relaxat
time is divergent near the critical point ast;uT2Tcu21, and
thus zn51 ~note the same relationship in the Gauss
model!. In the 1D Ising model, the SWN effect does n
change the dynamic critical exponentz52.

The influence of the randomness on the critical point.Our
result of the 1D Ising model is in contrast to that of the M
Ising model and the Gaussian model. For each one of th
the critical temperature on adding-type SWN,Tc

A , will be
higher than that on rewiring-type SWN,Tc

R , obtained for the
same expected number of the long-range bonds, though
difference may be hardly perceivable in the small-world
gion. A detailed analysis of the responsible mechanisms
be found in Sec. VI.

Prospects.We hope that further studies on critical dynam
ics will continue to reveal interesting dynamic characterist
of the widely existing critical phenomena combined wi
SWN. The simplified method shall become a useful tool
this field. As the phase transition is of the MF nature, t
method is certainly the best choice, and in this sense
basically different from the custom MF approximation a
plied to other universality classes. Presently, besides the
merical study, analytical treatment in the dynamic aspec

1As mentioned above, for some physical considerations one
define a differentJ8 for the long-range bonds, which might be muc
smaller thanJ. With this method we can prove that there is not su
a thresholdJc8 either.
5-10
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scarce compared to the study of the static properties@4,9#. In
fact, at least in some cases, such a study may be feasible
useful indeed. Our work, especially on the Ising model, a
shows that the study of the dynamic aspect is often abl
yield much information on the general properties in a re
tively convenient way.
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APPENDIX A: 3D GAUSSIAN MODEL OF THE
REWIRING-TYPE SWN

~1!. The two regular bonds onsk ~connectingsk21 and
sk11) have not been rewired, and the probability is
2p)2. This group can be further divided into many su
groups:

~1a! There are no random bonds onsk . The probability is
(12p)2(12@1/(N21)p#N22,

dqk

dt
52qk1

K

b
~qk211qk11!.

~1b! There is only one random bond onsk . The probability
is

~12p!2CN22
1 1

N21
pS 12

1

N21
pD N23

,

and

dqk

dt
52qk1

K

b
~qk211qk111M !.

~1c! There aren random bonds onsk , and the probability is

~12p!2CN22
n S 1

N21
pD nS 12

1

N21
pD N2n22

.

This group can be further divided intoCN21
n subgroups, each

corresponding ton specific spins connected tosk via the
random bonds, and with the same probability

~12p!2S 1

N21
pD nS 12

1

N21
pD N2n22

.

In the i th subgroup,

dqk

dt
52qk1

K

b S qk211qk111(
l 51

n

qi l D .

Thus, averaging them we get
02612
nd
o
to
-

e

dqk

dt
52qk1

K

b
~qk211qk111nM!.

~1d! There areN22 random bonds onsk , and the prob-
ability is (12p)2@1/(N21)p#N22,

dqk

dt
52qk1

K

b S qk211qk111 (
l 51

N22

qi l D
52qk1

K

b
@qk211qk111~N22!M #.

Thus, the first part of the time derivative of single spin, is

S dqk

dt D
1

5~12p!2F2qk1
K

b
~qk211qk11!

1
K

b (
n50

N22

CN22
n S p

N21D n

3S 12
1

N21
pD N2n22

nMG . ~A1!

~2! The bond connectingsk21 andsk is left unchanged,
but that connectingsk andsk11 has been rewired. This bon
can be rewired to each one of theN21 spins with equal
probability (12p)p/N. In each case, we can analyze t
situation in the way described above. For example, the b
is rewired tos j .

~2a! There are no random bonds onsk . The probability is

~12p!
p

N
~12p!2S 12

1

N21
pD N22

.

Also,

dqk

dt
52qk1

K

b
~qk211qj !.

~2b! There is only one random bond onsk . The probabil-
ity is

~12p!
p

N
CN22

1 1

N21
pS 12

1

N21
pD N23

.

Also,

dqk

dt
52qk1

K

b
~qk211qj1M !.

~2c! There aren random bonds onsk , and the probability
is

~12p!
p

N
CN22

n S 1

N21
pD nS 12

1

N21
pD N2n22

.

Also
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dqk

dt
52qk1

K

b
~qk211qj1nM!.

~2d! There areN22 random bonds onsk , and the prob-
ability is @1/(N21)p#N22. Also

d

dt
qk52qk1

K

b
~qk211qj1~N22!M !.

Thus the second part of the time derivative of single spin

S dqk

dt D
2

5~12p!pF2qk1
K

b
~qk211M !

1
K

b (
n50

N22

CN22
n S p

N21D n

3S 12
1

N21
pD N2n22

nMG . ~A2!

~3! The bond connectingsk andsk11 is left unchanged,
but that connectingsk21 andsk has been rewired~we omit
the very small probability that this bond may be ‘‘rewired
to sk). Now there is only one regular bond onsk . @Pay
attention that this case is different from Eq.~2!.# Based on a
similar consideration, we have the third part of the time d
rivative of single spin which obeys
-

et

.A

w
sy
,

02612
s

-

S dqk

dt D
3

5~12p!pF2qk1
K

b
qk111

K

b (
n50

N22

CN22
n S p

N21D n

3S 12
1

N21
pD N2n22

nMG . ~A3!

~4! Both the bonds connectingsksk11 andsk21sk have
been rewired. Based on similar consideration, we have
fourth part of the time derivative of single spin,

S dqk

dt D
4

5p2F2qk1
K

b
M1

K

b (
n50

N21

CN22
n S p

N21D n

3S 12
1

N21
pD N2n22

nMG . ~A4!

Applying Eq. ~10!, we get

dqk

dt
5(

i 51

4 S dqk

dt D
i

52qk1p
2K

b
M1~12p!

K

b
~qk211qk11!.

~A5!
t

t
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