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We analytically investigate the kinetic Gaussian model and the one-dimensional kinetic Ising model of two
typical small-world network$SWN), the adding type and the rewiring type. The general approaches and some
basic equations are systematically formulated. The rigorous investigation of the Glauber-type kinetic Gaussian
model shows the mean-field-like global influence on the dynamic evolution of the individual spins. Accord-
ingly a simplified method is presented and tested, which is believed to be a good choice for the mean-field
transition widely(in fact, without exception so faobserved for SWN. It yields the evolving equation of the
Kawasaki-type Gaussian model. In the one-dimensional Ising modep, dependence of the critical point is
analytically obtained and the nonexistence of such a thresppldfor a finite-temperature transition, is
confirmed. The static critical exponengsand 8 are in accordance with the results of the recent Monte Carlo
simulations, and also with the mean-field critical behavior of the system. We also prove that the SWN effect
does not change the dynamic critical exporeat2 for this model. The observed influence of the long-range
randomness on the critical point indicates two obviously different hidden mechanisms.
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[. INTRODUCTION ematics, and the one-dimensional Ising model. Interesting
kinetic features are revealed analytically and the study in the
Small-world networkSWNS are networks intermediate dynamic aspect also yields much information about the static
between a regular lattice and a random grdpbe Refs. properties, such as the critical point.
[1-4] and references therein for revigwrhey are believed This paper is organized as follows: In Sec. Il we give the
to capture the essence of networks in reality, such as neurgefinition of spin-lattice models built on SWN. Section IlI
networks[5], power grids, social networks, and documentscontains the discussion of the general appraatdng with a
on the World Wide Wel§6,7], where remote vertices, while brief review of the dynamic mechanismdhe direct appli-
locally clustered, often have the chance to be connected vigation to the kinetic Gaussian model can be found in Sec. IV.
shortcuts. Since 1998, when Watts and Strogatz presented!a Sec. V, we present a simplified method and prove its va-
simple model showing SWN effecfd], it has been studied lidity in Sec. V A by comparing its result with the rigorous
intensive|y and extensivemﬁ]_ From the point of view of oOne obtained in Sec. IV. Sections V B and V C are devoted to
statistical physics, the presence of shortcuts assists the syi§e further applications of this method on the Kawasaki-type
tem to behave as a whole, showing global coherence aridaussian model and the one-dimensional Glauber-type Ising
SWN behavior. model, respectively. In Sec. VI, the influence of the random-
One may be curious about the extent to which the featureBess on the critical point is analyzed. Section VIl is the sum-
of phase transitions will be different in spin-lattice models marization with some discussions.
built on small-world networks. Because the SWN effect
widely exists in reality, this_questiqn is also of much signifi- Il SPIN-LATTICE MODELS BUILT ON SMALL-WORLD
cance. Although new and interesting features have been re- NETWORKS
vealed recently4,9-14, it is still far from being completely
answered. The dynamic aspect has been even less well un- Following the first prototyp¢l] of SWN, there have been
derstood[17]. Naturally, we may expect the evolution of a a number of variantgsee, for example, Refl8]) in two
single spin to be influenced partly by the overall systembasic groups, which can be constructed as the following: the
however, we find it difficult to offer more specific informa- initial network is, for example, a one-dimensional loophbf
tion. This is due to the complexity of the dynamics itself, andvertices, each vertex being connected to k2arest neigh-
the often formidable mathematical task. bors. (1) Each pair of random vertices is additionally con-
In this paper, we report our work on this interesting nected with probabilityp,; (2) the vertices are then visited
problem—the critical dynamics of spin-lattice models built one after the other, and each link connecting a vertex to one
on SWN. As the introductory content, we shall first discussof its k nearest neighbors in the clockwise sense is left in
the general approach. Then, among the various model syglace with probability = pgr, and with probabilitypy, it is
tems, we choose two special ones for a detailed investigaeconnected to another randomly chosen vertex. We may call
tion: the Gaussian model, which is relatively easy in maththe first group adding-typ€SWNs and the second group
rewiring-type(SWNs. Both of these modifications introduce
long-range connections. The above algorithms can be ex-
*Mailing address. tended to systems with higher dimensionality and even frac-
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tal structures(For example, for a spin located somewhere in . 1 .
a cubic lattice, three of the six bonds in some fixed directions Wi(oi—0i) ==-exd — BH({aj+i},0i)],

will be reconnected with probabilitgy, respectively. These Q
constructions, with any(infinitesimally low) fraction of
shortcuts, allow us to reconcile local properties of a regular Qi=, exri—,BH({aM},&i)], 2)

network (clustering effect with global properties of a ran- o
dom one(the average distande- log;gN).
A spin-lattice model built on SWN, which is the focus of whereg=1/kgT. Based on the master equation, EL}, one
this paper, can thus be defined: IrDadimensional regular can prove that,
network consisting oN spins with periodic boundary condi-

tion, each spin is linked to itskD nearest neighbor@n this dg.(t) ~ - _
paper we will choos&=1). Then(1) a certain number of ~ ~ g _Qk(t)+% 2 oW (o= [P({ait),
supplemental links are adde(@) a portion of the bonds are 7k 3)

rewired. Whether it is in groupgl) (adding-type SWIN or
group (2) (re_vwrmg-type SWN, two spins connected by a whereq,(t)=2{c}oP({c};t). There are also correspond-
shortcut act in the same way as those connected by a regulﬁ{g equations for the correlation functions

bond, that is, their interaction contributes to the system '
Hamiltonian and they obey the redistributigexchangg ) ) o _
mechanism. In short, there is no difference between a long- B. Spin-pair redistribution mechanism

range bond and a regular one. Other definitions may exist. Kawasaki’s spin-pair exchange mechanism allows an
For example, since these small-world networks are modeking system to evolve with its nearest neighbors exchanging
systems for the networks in reality, one may have a reason ttheir spin values. In the spin-pair redistribution mechanism

choose certain physical quantities, suchJas the Ising [21], two connected sping; and oy may change to any

modgl, tp pe different. Howgver, although it is not necessanypossiple vaIuesfrj and &, as long as their sum are con-
we will limit the scope of this paper to the above rule.

served. The master equation is

d A
Ill. THE DYNAMIC MECHANISM &P({U},t):; 2 [~Wy(ojo—ajo)P{a}it)
(TJ' 0|
The various dynamic processes in the critical phenomena o
are believed to be governed by two basic mechanisms, +Wj (ojo—0joy)
Glauber type with order parameter nonconserved and Ka- aa
wasaki type with order parameter conserved. Recently, a XP({oizj,0124,07,01;0)]. (4)

Glauber-type single-spin transition mechanisif,20 and a o o ) )
Kawasaki-type spin-pair redistribution mechani$gt,22 The reQ|str|but|on probability is also in a normalized form
have been presented as the natural generalizations of Glau#igtermined by a heat Boltzmann factor,

er’'s flipping mechanism[23] and Kawasaki’'s exchange
mechanisni24], respectively. They are generally applicable
and mathematically well organized. Our work begins with a
review of these two mechanisms. This is for the better un- .
derstanding of the calculations in Secs. IV and V, and it also xXexg — BH({omtm«j.1,05,01)],
might be a convenient reference for further studies. (5)

Wj(ojo1—0oj0))= Q—“5aj+o, oo

. . . . where the normalization fact;, is
A. Single-spin transition mechanism

Glauber’s single-spin flipping mechanism allows an Ising o ~
system to evolve with its spins flipping to their opposite. In Qi = 2 5oj+a| ,o,-+o|exq_BH({‘7m}m¢j,l ,01,01)].
the single-spin transition mechanigm9], a single spino; 71l

may change itself to any possible values, and the master pased on the master equation, E¢), one can prove that

equation is
da(t) -
d . -
aP({a},t)=—2i > [Wi(o—ay)P({o},t) dt ZDqk(t)’L{Z,} % Lk%w 7k
~Wi(0i—0)P{oj}oi 0] (D) xwk,kw(okowwék&kwﬂP({cr};t>, (6)

The transition probability is in a normalized form determinedwhereD is the dimensionality andl,, stands for the summa-
by a heat Boltzmann factor, tion taken over the nearest neighbors.
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C. How to apply them to SWN matter how far apart, is connected via an additional bond

In the construction of SWN, according to a certain prob-With probability p,. Actually there are SN2 different
ability, we will have a whole set of possible realizations. Son€tWorks, each with a given probability. As a model system
the theoretically correct way of treating dynamic systemd© the networks in reality, we expect the number of these
built on SWN actually consists of three steps: First, we havd0nds,n~N(N—1)p,/2, to be much smaller thah. So
to make a full list of all the possible realizations and pointPractically we requirepsN<1. With respect to a specific
out the probability of each one of them. Second, we treafPin Tijk, all the networks can be divided intd groups
each system respectiveliapply the dynamic mechanism, listed as the following.
and obtain the master equation and the physical quantities of (& (0): Therelelno random bond an, and the prob-
interes}. Third, we give the expectation value with all these ability is (1—pa)™~". According to Eq.(8),
results. This is cumbersome, but conceptually straightfor- K
ward. In Sec. V, we shall discuss whether there is any sim- —qi() =g+~ > [ sw k(D 0wk
plified method.(In fact, there is. dt b %

IV. KINETIC GAUSSIAN MODEL GOVERNED BY THE G krw(]

GLAUBER-TYPE MECHANISM (b) (1): There is only one random bond @, and the

We have discussed the general approach right above iprobability isCR_1pa(1—pa)"~2. In fact, this group can be
Sec. Il C, and in this section we will directly perform the further divided intoN—1 subgroups, each corresponding to
calculations according to the three steps, to study the three specific spin connected i@, and each with the same
dimensional(3D) kinetic Gaussian model governed by the probability pa(1—pa)N~2. Averaging them, we get
Glauber-type single-spin transition mechanigsee Sec. 400
[l A). The calculation to be carried out is very long, but ik (t K
fortunately we can borrow some results from our earlier #:_Qiik(t“g % (9w k(D + i w k(1)
studies[19,20.

The Gaussian model, proposed by Berlin and Kac, is a

continuous-spin model. Its Hamiltonian, i jw(D]+ 5 M.
— BH= KS o0 @) (¢) (n): There aren random bonds owrjj, , and the prob-
() I ability is CY_;pa(1—pa)N """ L. Similarly, in average we
get,

whereK=J/kgT. The spinso can take any real value be-

tween (—, + ), and the probability of finding a given spin dagji(t) K

betweenoy andoy+doy is assumed to be the Gaussian-type g~ ~dix(D+ ¢ % LG+ w,j k(0 T jow, k()
distribution, f (o )do,~ exp:—(b/Z)aﬁ]dak, whereb is a

distribution constant independent of temperature. Thus, the

summation for the spin value turns into the integration 0 jk+wl(t) ]+ TM(U'
—[% .f(o)do. This model has been studied often as a start-
ing point for investigations of other systems. (d) (N—1): There areN—1 random bonds omj;, and

Governed by the Glauber-type single-spin transitiong,e probability isph .
mechanism, the expectation value of single J(ié] obeys

dgj(t) K
qcl;( ):_Qk(t)"‘B E qk'(t)- (8) dt q|]k(t) b % [qI+W,J,k(t) q|,]+w,k(t)
t (ak’ ,aK)
K
Since in SWN, a spin may have a neighbor located very far i jkrw(D]+ H(N=DM(D).

from it, in the following calculations the summation is to
include every spin that is connected with. Taking average
of Eqg. (8), we can obtain the evolution of the magnetization

Thus, over all the realizations,

dg;ix (t K
qlékt( ) — k() + b % [ w,j k(D) 0w, k(D)
A. Kinetic Gaussian model on an adding-type small-world
network N-1
K n n

First, we treat the 3D kinetic Glauber-type Gaussian i (D] b zfo Cn-1Pa(1
model on an adding-type SWN consistinghfa very large
numbej spins. The Kawasaki type is still tractable, but the —p )N " InM. 9)

mathematical task will be more complex. We will leave that
till Sec. V. Besides the regular bonds, each pair of spins, néortunately, we find the following relationship:
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N1 dg(t) 2K
HZO CRo1PAL=p)N " In=(N-1)p,, (10 gt~ WO FPrp-M()
K
and thus +(1-pRpleiD +aead], (14
daijk(t) K Int ; : ¢ oy
—— g () +— )+ t wo- and three-dimensional models, there afeald
dt A+ 5 % LGy 1O F G i 1) major groups, respectively, and they can be treated in the
K same way. Similar results are obtained:
+qi,j,k+w(t)]+ E(N_l)pAM(t)a (11) dM(t) 2DK
T:_< e M(t). (15
Similar results can be found in one- and two-dimensional
models, and taking average we obtain Obviously, the relaxation time
dm(t) L 2DK KN Do lu 15 1
G = |15 p (N Dpa M, (12 ™ ITRKE
whereD is the dimensionality. The solution of E¢L2) is where the critical point
R_ _
M(t)=M(0)exp(—t/7), Ke=Kg9=b/2D. (16)

To summarize, we strictly obtain the evolution of the

Gaussian model built on SWN. On the adding-type SWN,

the critical temperature will get higher as more long range
_ 1 bonds are added, while on the rewiring-type SWN the criti-
™ 1—K/KA' cal temperature is unchanged. With the dynamic scaling hy-
¢ pothesisT~ &~|T—T¢| ~%", we havezv=1, wherez is the
dynamic critical exponent ana is the correlation length
critical exponent. We shall leave the summarization of its

where the relaxation time

and the critical point

b properties to Sec. VII. The influence of the long-range bonds
A~ he critical point, which is a rather interesting topic, will
KA= ) (13)  on the critical point, w g topic,
2D+(N=1)pa be discussed in Sec. VI.

The Gaussian model, being an idealization, often has the
It is well known that for the critical point of the regular value of serving as a starting point for the more general
model,K{*?=b/2D, we can clearly see th#te critical tem-  studies. The evolving equations of the individual spins show
perature will get higher as more long range bonds aredistinctly the influence of the global coherence, whiafio-
added. Actually, for a vertex located on an adding-type matically takes a mean-field-like form as if it comes from an
SWN, the number of the long-range bonds ng~ (N averaged spin.This character, as well as some already-
—1)p,- In the small-world region, where the expectegd  proved facts in earlier studies about the static behavior, pro-
for most of the vertices is very small, the change of thevides us with some helpful hints for the simplification of the
critical point will be almost unperceivabl€The analysis of method, which is the topic of the following section.
this result can be found in Sec. VYI.

V. THE SIMPLIFIED METHOD
B. Kinetic Gaussian model on a rewiring-type small-world

Presently, for the critical dynamics on SWN, we still lack
network

a well-established approach that should be both theoretically

Second, we treat the kinetic Gaussian model on aeliable and practically feasible. The above-mentioned
rewiring-type SWN with a characteristic probabilipg. Be-  method(and the resulisis theoretically rigorous, but it is too
cause of the length, here we only give the details of tBe 1 complex for the other models, even for the simplest one-
case. With regards to a specific spip, all the networks can dimensional Ising model. In the preceding section, we have
be divided into four major groups listed as the followifd)y  pointed out that, irthe dynamic evolutiomf the Gaussian
both of the two regular bonds am,, connectingo,_; and  model built on SWN, the influence of the system as a whole
o+1, are not rewired(2) the bond connecting,_, ando,  on individual spins is mean-field-like. On the other hand,
is left unchanged but that connectiog ando ., is rewired;  recent studies on the Ising model and ¥ model built on
(3) the bond connecting, and oy, ¢ is left unchanged but SWN have also shown that the phase transition ighef
that connectingr,_; andoy is rewired;(4) both of them are mean-fieldtype (see Refs[4,9-12,1% and Sec. V C for de-
rewired. The final result comes from the summation of all thetails). The various model systems built on SWN probably
four parts(see Appendix A for the details belong to the same mean-field universality class, and they
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might be treated with the same dynamic approach. In thiSimilar results can be obtained for one- and two-dimensional
problem, which is found to be of the mean-field nature, themodels. These results, along with thoselNbft), are exactly
following method may be the best choice. We deem all thén accordance with what we have obtained in Sec. Il B, Egs.
possible networks as a single one. The effective Hamiltoniaf11) and(12).

of a spin-lattice model built on such a network is defined as In the 3D kinetic Gaussian model built on the rewiring-
the expectation value over all possible realizations. Its effectype SWN, the effective Hamiltonian is,

tive behavior, e.g., the redistribution between two vertices

connected with each other, is also the averaged result. For gH=K(1— pR)E Oij(Tit 1)k T Tij 11kt T j 1)
example, two sitesy; and o, are connected with probabil- hik

ity p, then redistribution occurs between them with probabil- 3 3

ity pW;; . (It is the basic assumption when we are treating a +Kpryy > ok 2 airj0 = KPayg > by
system governed by the Kawasaki-type mechanisthen Lk ik Lk

we can directly apply the dynamic mechanisms to this sys- (20)

tem. This method, which is of the mean-field nature, is cer-
tainly more tractable in mathematics. We apply it to the ki-Similar calculations yield
netic Gaussian model again and see if it will lead to the same d i

K
result. T:_qijk'i_pRFM_l'(l_pR)B% (Qi+w,jk

A. Application in kinetic Gaussian model governed by the +0ij+wkt qi,j,k+w)-

Glauber-type mechanism This is also in accordance with the rigorous result, Ef4)

In the 3D Gaussian modelN( spins in total built on  and(15). Thus, in the kinetic Gaussian model, this simplified
adding-type SWN with periodic boundary condition, the ef-method yields the same results as the rigorous ones obtained
fective Hamiltonian is with the more complex standard method. As various spin-

lattice models, such as the Ising model, are believed to show
—BH= KE Tii(Tis1j kT Tijr1kt Tij 1) mean-field behavior on SWN, we believe that this simplified
ik method is able to provide at least qualitatively correct infor-
1 1 mation._ In t_his sense, i; is very diff_erent f_rom the mean-field
+5 KDAZ Tijk 2 Tirjri— KpA_Z a'izjk_ approximations taken in other universality classes. In later
NIRY ik studies, we will use it to study some more complex prob-
(17) lems; the following are two examples.

) - ) ) B. Application in kinetic Gaussian model governed by a
With the Glauber-type transition mechanism, we begin to Kawasaki-type mechanism

derive the single-spin evolving equation according to By.
along the same line of the calculations as in R&f]. We
obtain

Now we apply this simplified method to study the diffu-
sion process in the kinetic Gaussian model built on SWN.
Although we still have to deal with many complex equations,

A A K it is relatively easy compared with the formidable task of the
> TijkWijk(Tijk— Tijk) = 5 > (Tisw ikt Tij +wk standard approach. In such processes, the system is governed
Tijk w by the Kawasaki-type redistribution mechanism. As already

mentioned at the beginning of this section, the system behav-
+ 0 jerw) T (N— 1)pA; , ior, just as the Hamiltonian, is also averaged over all possible
realizations. The basic equations for the Kawasaki-type dy-
(18) namics listed below are generally applicable in various
order-parameter-conserved processes.
(1) On D-dimensional adding-type SWN: Accordingly,
where the master equation should be modified as,

_ 1 1 d a A
U=—(2 U|mn‘¢ijk>”ﬁ%:n Olmn - ap({ff}:t)=<§_|:> E [—W(ojo—0jo)P({o};t)

N—11 fmn ] i 9]

Substituting Eq(18) into Eq. (3), we get TWil(0j01—010) P04}, 014,07,0130)]

1
daj(t +5Pa> 2 > [-W(gjo—0j0))
qé';( )_ Ijk 2 [Q|+W]k +q|]+w k(t) 2 g I 791 : : :
K XP({U}it)+Wj|((ATj<AT|—><TjU|)
(1T (N-DpMD. (19 P({01a) 01061 00, o1
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where the redistribution probability; (oo — o07) is of P({o}:t) + W, (01— o)
the same form as Ed5). With Eq. (21), we can get that

q;ﬁ)——zoqszz[ S o

XP({Tisj,0141,07,00;0)]. (23

The redistribution probabilityW; (ojo—0;0) is of the

Tk Thew same form as Eq5), and
X Wy ks wl 0kOk+ w— Tk Tkw) [P atit) da(t) ~
T e =1 p@[ ~2DaK(0)+ 3 E{ DI
Tk Tk+w
~(N- 1>qk<t>+2 2 2 o -
{ K oy .0 XWk,k+W((Tk0'k+w_)0'k0'k+w)}P({U};t)}
X Wy (i — o) P({U}?t)]
|—(N 1qk(t>+2 2 2 o
{o} Koy,a
=AD+paAl). (22
(2) On D-dimensional rewiring-type SWN: Accordingly, XWy(okoi—oyoy) P({‘T};t)}
the master equation should be modified as
Dpr
d =(1-pr)RY+ —R?. 24
GiPUPL =P 3 3 (W01 57) TUTPRRCT R 2

AlthoughA*? andR{}? are of the same form, respectively,

XP({a};t) + W (aj01— 007 we use different symbols because they are actually different
(determined by the Hamiltonian-dependent redistribution
- o o robabili .
Plaiz e DpRN_ 1 P First wt}é\?r/()aat the Gaussian model built on the adding-type
SWN. The first partA), comes from the redistribution
xz E E [—Wj (o 0'|—>0'J o) between the nearest ne|ghbors. In the 3D case, with(&q.
S we can obtain

1
Al(]lk)_z(b+ K) B+ 1,k ijk) — (Gijk = Ai— 1) TH (i j+ 16— i) = (Gijk = i j— 1) T (Qi j k1~ Diji)

K
—(Qijx— i jk-D 1+ m[Z(ZQi—l,j,k_Qi—l,j+1,k_Qi—1,j—1,k)+(ZQi—l,j,k_Qijk_Qi—z,j,k)

+2(20i 1 1j kit 1jrik— Div1j-100) T (201415 k= ijk = i+2j,6) T 2205 j 1= i j-1k+1— i j-1k-1)

(20 j -1k~ ijk =i j—26) T 20205 jr1x— i j+akr 1 ijr1k-1) T (205 j+ 16— ijk— i j+2)

+2(20i j -1 i+ 1j k-1 di—1jk—1) T (20i j k-1~ Aijk =i jk-2) T2(20i j ks 1= it 1jkr1—di-1jk+1)
+(20di j k1~ Aijk =i j k2] (25

Actually this is not as complex as it seems. With the lattice

1
constanta, we can transform the above expression to be A= —(N—1)qj(t) + > > [ +dirjre(t)]
ik #ijk
3a% (b K
1)_ _ 2 +— ()
i(jk)_b-i-K 6 K)V q(r,t). (26) 2b |’J’k2¢|1k % [(q|+w,1,k(t) q|,1+w,k(t)

i j ke w(D) = @irpw,jr o (D Firjrsw i (1)
The second part\{;), comes from the redistribution be-

tweenaoy; and the farther spinsr; i . The result is +irjr ok +w(D)], (27
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Substituting Eqs(26) and (27) into Eg. (22), we obtain the analytically[4,9] and with Monte Carlo simulatiorf40-14].

evolving equation of the Gaussian model built on 3D adding-Due to the mathematical difficulties, the study was not going

type SWN, very smoothly at the beginning. In Ré¢®], Gitterman con-
cluded that the random long-range interactions, the number

aq(r,t) 3a’ K N—1 a’ V2 of which is above a minimal value, lead tophase transi-
s lbrkls KT Pa(N= )% q(r.t) tion. In Ref.[4], Barrat and Weigt used some approximations
( ) and expected a finite critical point “at least for sufficiently

Pa(N—1 large p andk=2" on rewiring-type SWN. They found out

* 2 (1_ T)WI(t)_q“’t)]' (28 that this transition is of the mean-field typalthough they

could not calculate the transition analytically, the numerical
Similarly, on 3D rewiring-type SWN we obtain computation demonstrates nonvanishing order parameter
in the presence of a vanishingly small fraction of shortcuts

aq(r,t) 3a? b for k=2 and 3. The numerical results seemed to support the
Frammi L€ Ve K(1—pr) 5 K1-pr) following relationship,T.~ — 2k/log;opr. The more recent
Monte Carlo studies have proved the above-mentioned con-
K 3pr 6K clusions on adding-type SWN and rewiring-type SWN, re-
—(1— 2 RIS [ [P ’
+3pR2b(l pR)]V q(r,t)+ 2 [1 b spectively, but in those casks-1. The analysis of the rela-
tionship betweerT . and pg can be found in Refl11]. The
critical exponents obtained from the simulatipti, 12,185,
X(1— - . ) X
(1=pe) (MU =a(r.1)] @9 B~112, =0, andv~1/2, further establish the mean-field

character. However, although there is substantial numerical
From these two equations we can clearly see the influencgroof, the nonexistence of such a threshpld for a finite-

of the system built on SWN as a whole on individual spins.temperature transition, is still to be confirmed.
On regular lattices the evolution of the system can be ex- In this paper, we will apply the simplified method, which
plained by the diffusion mechanism, while on SWN, to someis of the mean-field nature, to study the dynamic properties
degree, the individual spins will automatically adjust itself to of the one-dimensional Ising model built on both adding-
approach the average magnetization. This is obviously thg/pe and rewiring-type SWN. We hope the success in the
result of the global coherence introduced by the small fracGaussian model will continue in Ising system, of which the

tion of the long-range bonds. behavior is already known to be the mean-field type. Al-
On regular lattice, where the evolution is pure diffusion, though we cannot obtain the full picture of the evolution, we
aq(r,t)/at=DV?q(r,t), and the diffusion coefficier® will  are able to get the exaptdependence of the critical point,

vanish near the critical point. However, on adding-typeand some interesting critical exponents. As will be shown
SWN, where dq(r,t)/at=D'V?q(r,t)+C[M(t)—q(r,t)], below, our result agrees perfectly with the above-mentioned

two temperaturesl; andT%, can be obtained by settifd’  numerical simulation.
andC to zero, respectivelyT%; will be lower than the critical We find that the system shows very similar behavior for

temperature on a regular latticE,*?, and suggests that the adding- and rewiring-type SWN. We shall give the details of
point at which the diffusion stops will be lowered by the rewiring-type SWN only, and report on the results of adding-
randomnessT?, equalsT/®9, and at this point the evolution type SWN later. _ o

will be pure diffusion. Similarly, there are also two tempera-  For a rewiring-type SWN, the effective Hamiltonian is the
tures for rewiring-type SWN, but we will havél <TS, ~ Sameas Eq(20) (the one-dimensional versipriVe substi-
<Treo, tute it into the single-spin evolving equation, E®), and

Obviously, the system behavior strongly depends on th(?btaln
temperature. For example, we study a one-dimensional sys- da(t)

tem, and the initial magnetization @gx,0)= sinx. When the BT —qk(t)+2 tanf K(1—pgr)(ok_1+0ki1)

temperatureT>T,,, both D’ and C are positive, and the {o}

magnetization will approach homogeneity. Wh&r< T4, +2Kp ;]P({o}'t) (30)
R L)y

both D' and C are negative, and the inhomogeneity gets
more remarkable during the evolution. Whégp<T<T.,
D’'>0 butC<O0, and this is a more complex region. Al- Wheregzgj#kaj/(N_l)mgjaj/N_

though here we can still easily predict the system behavior | pr=0, then it is the one-dimensional Ising model on

with Eq. (28) and obtain a stationary point, generally the reqyar lattice, which we are familiar with. One can continue
evolution will be strongly dependent on the local magnetizatg write

tion.

da(t)

I . 1
C. Application to the Ising model T qu(t)+ E(qk_1+ Q. 1)tanh X

The second application of the simplified method is to the
one-dimensional ferromagnetic Ising model governed by the
Glauber-type mechanism. Recently, it has been studied botnd
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dM(t) BecauseM is very small, we believe N2k<;0'k_1ak+1) is
dat M(t)(1-tanh X). an even smaller quantity of higher order. Thus
: —t/T _ _ -1 dM(t)
It yields M(t)xe "", where 7=(1—tanh ZK) *. When K = —M+Mtanf2K(1-pgr)]
—KE9=00, 7~ ¢~ (e?)?, and thusz=2. dt

If the rewiring probabilitypg=1, then 1
+2KpR[ 1- Etanr?[ZK(l— pR)]] M. (32

dad0) = —qt)+ >, tanh2Ka)P({a};t)
dt R = Y The critical point can be determined as
and R R 1 R
tani 2KJ(1—pgr) ]+ 2K pgri 1— Etanh”—[ch(l— Pr)]
dM(t _
di ):—M(t)+{2} tanh2K o) P({o};t). =1. (33

If K< KR, the disordered stat®l =0 will be stable, but if
Although <tanh(2<o))¢tanh(2<M) if we study the case K>K , a small perturbation will drive the system apart
when, near the critical point, the system is in almost thorfrom the disordered state towards nonzero magnetization.

ough disorder, we will have( tanh(2<;)>~tanh(EKM) Now we continue to find several interesting critical expo-

~2KM1 and nents.
(1) x~|T—Tc| 7 Near the critical pointM¢—0. If a
dM(t) weak fieldH is introduced, we will have
~—M(t)+tanf 2KM(t)].
dt K H
_,BH:; o K(l_pR)0k+1+pRm J;k Uj+kB—T \

This helps us to determine the critical pokt=1/2. When

K<K.=1/2, then the system will be stable in a disordered nd

state W|thM 0, but wherK=K.=1/2, there appears some

kind of order. Taking Taylor expansion, one can find that (0

whenK is nearK ., M~ (K —K.)¥2 This leads tg3=1/2(in — = —qt)+ >, tam{ K(1—pr)(ox_1+ 0ks1)

this specific situation We also get the relaxation time dt lo}

~|K—=K¢|1, with the scaling hypothesiésee below we

havezvr=1. +2KpR(r+
Qualitatively similar situation should also be found when

Pr is between 0 and 1. First we assume that there is a CrItIC'E}iollowmg the same way as that taken in the calculation of

temperature, above which the system is disordered and be

low which there begins to show nonzero magnetlzatlonthe crifical point(in fact, we can just replaceiro by

From Eq.(30) we find that if initially M=0 is given, then 2Kpgro+H/kgT), we get

the system will stay in this disordered state. But below the

7 |PUahD. (39

critical temperature this equilibrium will not be stable. We d _ _
can determine the critical point introducing a small perturba- dt M(D==M{O+M D@ 2K (1= pg)]+| 2KpM(1)
tion. WhenM —0, 1

+——|{1— s tanif[2K(1— : 35
dat) T | 1 Ztan2K( pR)J] 35

—gr =~ A(D+2 @anfK(1-pg)(oy-
to} From Eq.(35), one can easily find that in a system in equi-

— librium near the critical pointK =KZ+ A, and
+o-k+1)]P({a'};t)+2KpR{2} o{1—tani[K(1

_M
—PR(i 1+ o D IP ki) BRI (38
=—o(t) + %(QK—1+ Ok+1)tant 2K(1-pg)] Thl(;' YM:~1|IT—TC|B: WhenM—0. we take
+2KpR{EU} ;{1— %(1+Uk_lok+1)tanhz[2K(1 %; (G0 100 )~ M2
—DR)]] P({a};t). (31)  Then from Eq.(31) we can get
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[ - —u— A-SWN: n,, K* ]
—o— R-SWN: n,, K*

log,n

FIG. 1. Then dependence of critical poit, of 1D Ising model
on adding-type and rewiring-type SWN.

dM(t)
Tz—(l—taHHZK(l_pR)]_ZKpR

X

1
1- Etanr?[ZK(l— pR)]] ) M (t)
—Kpgtanif[2K(1—pg) IM3(1).

When K—KR=A—-0, let dM(t)/dt=0, and one will get
M2~ A by taking Taylor expansion. Thus, the critical expo-
nentB=1/2.

(3) 7~ &~|T—T.|~*: When studying the critical slow-
ing down, we can assunid to be very small, and thus we
use Eq.(32). It yields

M(t)=M(0)e Y7,
where

r1=1—tanH2K(1—pr)]—2Kpr

1
X 1—§tank?[2K(l— P11 -

If K—KR, thent—o. If K=KR—A, andA—0, then one
will find 7~A 1. Thuszv=1. It has been found in Monte
Carlo simulations thav~1/2, soz=2. It is of the same
value as that obtained on the regular lattice.

1D Ising model on adding-type SWN shayualitatively
the samebehavior Its critical point can be determined as

1
tanh K2+ KAN— 1)pA( 1- Et.alnr?zKé\) =1, (37

and we have founthe same critical exponenty, 8, andz

PHYSICAL REVIEW BE7, 026125 (2003

Fig. 1. One can clearly see the above mentioned approximate
relationship, K5 —logygna~ —logid (N—1)pa], or KRe
—logyonr~ —109:o(2pPR).

Whenn, and ng are small enoughin the small-world
region, from Eqgs.(33) and (37) we can get

1
ng=(1—tanh X¥) / (EKE‘tanr?ZK?) :

na=(1—tanh EKQ)/ Kﬁ(l— %tank?ZKﬁ
Whenn, and ng are approaching zer(K’c*'RHoo. For the
same value of the critical pointng—n,)—0". As shown in
Fig. 1, for most of the region, the two curves are very close
to each other. However, though the difference may be infini-
tesimal, the curve ofg is always above that afi,, as is
distinct when these curves are relatively large.

VI. THE INFLUENCE OF THE RANDOMNESS ON THE
CRITICAL POINT

Regarding the behavior of the critical point, our results
show interesting contrast between the Gaussian model and
the Ising model. Here, we shall mention another interesting
model system, theD-dimensional mean-fieldMF) Ising
model, which might help us understand this problem. For a
randomly selected spin in this model, each of i3 Bearest
neighbors is replaced by an averaged one, and it is well
known that the critical point i&.=1/2D. A simple calcula-
tion will yield that on rewiring-type SWN,KCR will not
change, while on adding-type SWN, since the long-range
bonds increase the contact of a spin with the sysﬂﬁ@n
=1/(2D+nyp).

Our result of the 1D Ising model is in contrast to that of
the MF Ising model and the Gaussian model, while for each
one of them the critical temperature will be very close on
adding-type SWN and rewiring-type SWithe former will
be highey in the small-world region. This may be a result of
the totally different role played by the long-range bonds)

In the D-dimensional MF Ising model, the critical point is
solely determined by the mean coordination humber that de-
cides the coupling between an individual spin and the sys-
tem. It is unchanged on rewiring-type SWN but will increase
on adding-type SWN. Thus, the critical temperature will stay
unaltered on rewiring-type SWN but will be slightly in-
creased by the long-range bonds on adding-type SWN,
which typically take up only a small fractior(lb) As is
shown by earlier studiegl9], the Gaussian model, though
being a very different system, has a critical point that also
only depends on the mean coordination numlign SWN,

its critical point is very similar to the MF Ising model. It is
believed to be mainly a mathematical result, and to under-
stand this we shall review the calculations in Sec. IV. On

For a vertex on an adding-type SWN lattice, the numberewiring-type SWN, for an individual spin, the long range

of the long-range bonds is,~(N—1)p,, while for a ver-
tex on a rewiring-type SWN latticeng~2pg. Then depen-
dence of critical poinK, of 1D Ising model on adding-type
and rewiring-type SWN, Eq4$33) and(37), can be found in

interaction partly replaces the nearest-neighbiam) cou-
pling. However, the coordination number can be considered
unchanged, since no bonds are created or eliminétesy

are just redirectedAs a result, on the right-hand side of the
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evolving equations of the spins, the lost part of the nn coutype SWN such influence is additional while on rewiring-
pling is exactly compensated by the MF term. The criticaltype SWN, it partly replaces that of the neighboring spins.
point is determined by taking average of the evolving equaf2) On adding-type SWN, as more long-range bonds are
tions of the spins, which only consist of linear terms. Thus, itadded, the critical temperature gets higher; but on rewiring-
is mathematically straightforward that the critical point will type SWN it does not differ at all from that of the regular
stay the same. On adding-type SWN, the consideration igattice. This interesting discrepancy is explained in Sec. VI.
similar, except that here the coordination number will be(3) In both networks, the relaxation time=1/(1-K/K),
slightly increased(2) The crossover observed in the one- and thuszv=1. This dynamic property has also been ob-
dimensional Ising model is certainly governed by a differenttained on regular lattices and fractal lattidd®9—22. It is
mechanism. For example, on rewiring-type SWN, there aréighly universal, independent of the geometric structure and
two competing length scales: the correlation length the dynamic mechanisnt4) On SWN, the evolution of the

~ exp(2/kgT), and the characteristic length scale of theKawasaki-type model can be viewed as the combination of
SWN, which can be taken as the typical distance between thgvo mechanisms, the diffusion and the automatic adjustment
ends of a shortcuf25], {~ pgllD: pgl. When ¢<¢, the  of the single spin to approach the average magnetization. The
system basically behaves as a regular lattice, otherwise it wipure diffusion equation & dt)q(r,t)=DV?q(r,t) will be
show MF behavior as an effect of the long range interactionsmodified as §/dt)q(r,t)=D'V2q(r,t)+ C[M(t)—q(r,t)].

The transition occurs af~ ¢, suggesting a critical point, By setting D’ and C to zero we will get two competing
~|logyopr| 2. Since the two structures, rewiring-type SWN characteristic temperatures, instead of the single definition of
and adding-type SWN, have the same length scales, the critihe critical point for the regular latticesD=0). The tem-

cal point can hardly be separated in the small-world regionperature dependence of the dynamic evolution is discussed in
However, interestingly we find that the mechanism in Eq.Sec. V B.

(1), i.e., long-range bonds- coordination numbe(interac- The Ising modelanalytically studied by the simplified
tion energy — critical point, can also be observed, though method: The system shows very similar behavior on the two
being a minor factor. As is mentioned in Sec. V C, for thenetworks, adding-type SWN and rewiring-type SWN. Intro-
same expected number of long-range bonds, the critical tengucing a very small perturbation of the local magnetization
perature on adding-type SWN will be higher than that ob-to the disordered state, we obtain the critical point by judging
tained on rewiring-type SWN. We expect it to be a generakhe stability of the equilibrium. The inexistence of such a
phenomenon, though not yet reported by the numerical simuthresholdp,, for a finite-temperature transition is confirmed.
lations. From the dynamic equation, we obtain the critical exponents
v and B in agreement with the numerical simulation and the
already-proved MF behavior of the system. The relaxation
time is divergent near the critical point as- | T—T¢ %, and

In this paper, we study the critical dynamics, Glauber typethus zv=1 (note the same relationship in the Gaussian
and Kawasaki type, on two typical small-world networks, mode). In the 1D Ising model, the SWN effect does not
adding type and rewiring type. change the dynamic critical exponerit 2.

The logical sequencés the introductory content we dis- The influence of the randomness on the critical pddur
cuss the general approach of the critical dynamics, which igesult of the 1D Ising model is in contrast to that of the MF
theoretically straightforward but may be mathematically toolsing model and the Gaussian model. For each one of them
complex. We directly apply it to the kinetic Gaussian modelthe critical temperature on adding-type SWF@, will be
governed by Glauber-type mechanism and obtain its evoluhigher than that on rewiring-type SWNZ, obtained for the
tion. We observe that, in theynamicevolution of the indi-  same expected number of the long-range bonds, though the
vidual spins, the influence of the system as a whole, which iglifference may be hardly perceivable in the small-world re-
the result of the presence of the long-range bonds, takes thgon. A detailed analysis of the responsible mechanisms can
mean-field-like form as if it comes from an averaged spin. Athe found in Sec. VI.
the same time, earlier studies have revealed(hfie) static ProspectsWe hope that further studies on critical dynam-
behavior of the Ising model and-Y model. These both sug- ics will continue to reveal interesting dynamic characteristics
gest us to present the following simplified method. All the of the widely existing critical phenomena combined with
SWN realizations are deemed as a single one, with both theWN. The simplified method shall become a useful tool in
effective Hamiltonian and the effective behavior averagedhis field. As the phase transition is of the MF nature, this
over all of them. It is tested in the same model and exactlynethod is certainly the best choice, and in this sense it is
leads to the same rigorous result. Then this method, which isasically different from the custom MF approximation ap-
believed to be theoretically reliable and mathematically feaplied to other universality classes. Presently, besides the nu-
sible, is applied to two more difficult problems, the Gaussianmerical study, analytical treatment in the dynamic aspect is
model governed by Kawasaki-type mechanism and the one-
dimensional kinetic Ising model. —

The Gaussian mode(1) Whether it is built on adding-  1As mentioned above, for some physical considerations one may
type SWN or rewiring-type SWN, the long-range bonds in-define a differeni’ for the long-range bonds, which might be much
troduce the mean-field-like global influence of the system tasmaller thanl. With this method we can prove that there is not such
the dynamic evolution of the individual spins. On adding-a thresholdl/ either.

VIl. SUMMARY AND DISCUSSION

026125-10



INTRODUCING SMALL-WORLD NETWORK EFFECTS TO. .. PHYSICAL REVIEW BE7, 026125 (2003

scarce compared to the study of the static propeftied. In da K

fact, at least in some cases, such a study may be feasible and at — Okt B(QK71+ Ok+1+NM).

useful indeed. Our work, especially on the Ising model, also

shows that the study of the dynamic aspect is often able to (1¢) There areN—2 random bonds omr, and the prob-
yield much information on the general properties in a rela-gpjjity is (1—p)[1/(N—1)p]N "2,

tively convenient way.

qu K N—2
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APPENDIX A: 3D GAUSSIAN MODEL OF THE Thus, the first part of the time derivative of single spin, is
REWIRING-TYPE SWN
(1). The two regular bonds oo, (connectingo_, and % —(1-p)2| — gt E( n )
ow.1) have not been rewired, and the probability is (1 dt/, P I A
—p)?. This group can be further divided into many sub-
groups: K N2 . p \"
(1@ There are no random bonds og. The probability is + b nZO Cn-2 N—1
(1-p)*(1-[L(N-1)p]"~2,
N—n-—2
qu X 1—mp) nM (Al)

K

FTL B(qk—l+qk+l)-

(2) The bond connecting_, and oy is left unchanged,

(1b) There is only one random bond @n.. The probability but that connecting-k andoy,, has been revyired._This bond
is can be rewired to each one of tié—1 spins with equal
probability (1—p)p/N. In each case, we can analyze the
1 1 N-3 situation in the way described above. For example, the bond
(1—p)2Ch2—p(1——p) is rewired too; .
N—-1 N—1 ' (2a) There are no random bonds of. The probability is

and ) p . o 4 1 N-2
( —p)ﬁ( -p) “No1P :
qu K
gt - Okt E(Qk—1+QK+1+M)- Also,
. da K
(10) There aren random bonds owr, and the probability is rTan — Qi+ B(qk‘1+ aj)-
. 1 n 1 N-n-2 (2b) There is only one random bond ef. The probabil-
(1=P)"Cn2| g7 P) |1 N—7P : ity is
. A . p 1 1 N-3
This group can be further divided in@}_; subgroups, each (1—p)—CL 1—
. s . . N N72N_lp N_lp .
corresponding ta specific spins connected 1@, via the
random bonds, and with the same probability Also
1 n 1 N—n—-2 d
2l - Ok K
(1=p) (N—1p> (1 N—1p> ' Tt = Akt (Qeat g+ M).
In the ith subgroup, (2¢) There aren random bonds omr, ., and the probability
is
dgy K . n N-n-2
e DR H - FEPEE FIPEE) S P 1 1
gt =~ Ot gl Gt deat 2 1-po &z(mp> (1_mp) _
Thus, averaging them we get Also
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da

K
Gt -+t (Gk-1tgFnM).

da K K'S p\"
(W)3—(1—P)p{—Qk+ pakt g nZO Cn-2 N-1

(2d) There areN—2 random bonds om,, and the prob- 1 N—n-2
ability is [1/(N—1)p]N~2. Also x| 1- mp) nM|. (A3)
d K
gt~ Akt 5 (A-1F G+ (N=2)M). (4) Both the bonds connecting,o. ; andoy_ ;0 have

been rewired. Based on similar consideration, we have the
Thus the second part of the time derivative of single spin idourth part of the time derivative of single spin,

qu) [ K dq K = kN2 p\"
——=| =(1-p)p| — G+ —(qQe_1+ M) X —p? —qut —M+ — ool
(dt . (1=P)P| = Akt 1 (k-1 (dt)4 p? — Gt g M+ ,ZOCN2<N—1)
N-2
K p n 1 N—n—-2
+— 2 Chiol o S
5 nZO N—Z(N_l) |1 N_lp) nM}. (A4)
1 N—n—2 i
x| 1— mp) nMl. (A2) Applying Eq. (10), we get
. . day : da
(3) The bond connecting and o ; is left unchanged, —=> | =
but that connectingr,_; ando has been rewire@ve omit dt =1\ dt [

the very small probability that this bond may be “rewired” oK K

to o). Now there is only one regular bond an,. [Pay =t P—M+(1=pP) = (A1 + ez 1).
attention that this case is different from Eg).] Based on a b b

similar consideration, we have the third part of the time de-

rivative of single spin which obeys (A5)
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